Erratum to: Triggered Fronts in the Complex Ginzburg Landau Equation
نویسندگان
چکیده
We study patterns that arise in the wake of an externally triggered, spatially propagating instability in the complex Ginzburg-Landau equation. We model the trigger by a spatial inhomogeneity moving with constant speed. In the comoving frame, the trivial state is unstable to the left of the trigger and stable to the right. At the trigger location, spatio-temporally periodic wavetrains nucleate. Our results show existence of coherent, “heteroclinic” profiles when the speed of the trigger is slightly below the speed of a free front in the unstable medium. Our results also give expansions for the wavenumber of wavetrains selected by these coherent fronts. A numerical comparison yields very good agreement with observations, even for moderate trigger speeds. Technically, our results provide a heteroclinic bifurcation study involving an equilibrium with an algebraically double pair of complex eigenvalues. We use geometric desingularization and invariant foliations to describe the unfolding. Leading order terms are determined by a condition of oscillations in a projectivized flow, which can be found by intersecting absolute spectra with the imaginary axis.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملTriggered Fronts in the Complex Ginzburg Landau Equation
We study patterns that arise in the wake of an externally triggered, spatially propagating instability in the complex Ginzburg-Landau equation. We model the trigger by a spatial inhomogeneity moving with constant speed. In the comoving frame, the trivial state is unstable to the left of the trigger and stable to the right. At the trigger location, spatio-temporally periodic wavetrains nucleate....
متن کاملExact Solutions of the One-Dimensional Quintic Complex Ginzburg-Landau Equation
Exact solitary wave solutions of the one-dimensional quintic complex Ginzburg-Landau equation are obtained using a method derived from the Painlevé test for integrability. These solutions are expressed in terms of hyperbolic functions, and include the pulses and fronts found by van Saarloos and Hohenberg. We also find previously unknown sources and sinks. The emphasis is put on the systematic c...
متن کاملExploding soliton and front solutions of the complex cubic-quintic Ginzburg-Landau equation
We present a study of exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau (CGLE) equation. We show that exploding fronts occur in a region of the parameter space close to that where exploding solitons exist. Explosions occur when eigenvalues in the linear stability analysis for the ground-state stationary solitons have positive real parts. We also study transition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Nonlinear Science
دوره 27 شماره
صفحات -
تاریخ انتشار 2014